IEEE Test and Diagnostics Standards

John Sheppard

ARINC

2551 Riva Road

Annapolis, MD 21401

410-266-2099

jsheppar@arinc.com

Mark Kaufman

NWAS

PO Box 5000

Corona, CA 91718

909-273-5725

kaufman.mark@corona.navy.mil

Test And Diagnosis Standards

- **IEEE Std 1232-1995.** *IEEE Standard for Artificial Intelligence Exchange and Service Tie to All Test Environments (AI-ESTATE): Overview and Architecture*
- IEEE Std 1232.1-1997. IEEE Standard for Artificial Intelligence Exchange and Service Tie to All Test Environments (AI-ESTATE): Data and Knowledge Specification
- IEEE Std 1232.2-1998. IEEE Trial-Use Standard for Artificial Intelligence Exchange and Service Tie to All Test Environments (AI-ESTATE): Service Specification
- IEEE Std P1522. Draft Standard for Standard Testability and Diagnosability Characteristics and Metrics

Diagnosis

- Derived from two Greek words:
 - δια: about/through
 - γιγνοσκην: discernment/knowledge
- Any conclusion that can be drawn about the health state of a system under test.
- Includes "no fault."

Information Model

- An information model is a formal description of types (classes) of ideas, facts, and processes that together form a model of a portion of interest of the real world.
- Information models provide a formal specification of the semantics of information in an "Information System"

Information Model

 Purpose: To identify clearly the objects in a "domain of interest" to enable precise communication about that domain.

Comprises:

- objects or entities
- relationships
- constraints
- When taken together, these provide a complete, unambiguous, formal representation of the information in the domain of interest.

Information Exchange Files

- Information can be stored in files by one application and read from the files by another.
- The file format provides a common syntax.
- The legal content of the file is defined by the semantics of the model.

Information Exchange Services

- Information can be shared between applications by way of software or hardware services over a communications backbone.
- The interface definition provides a common syntax.
- The legal content of the message is defined by the semantics of the model.

Common Element Model

- Contains model elements in common to diagnosis independent of diagnostic approach.
- Provides for hierarchical relationships among model elements.
- Includes model for cost attributes.
- Captures information about required context.
- Developed in ISO 10303 Part 11 (EXPRESS).

Simplified CEM

Dynamic Context Model

- Captures state of diagnostic reasoning.
- Compatible with all of the inference models defined within AI-ESTATE.
- Instantiated during a diagnostic session.
- Can be saved to provide historical trace of diagnostic process.
- Includes current context for comparison with required.
- Developed in ISO 10303 Part 11 (EXPRESS).

Simplified DCM

General Diagnostic Process

AI-ESTATE Execution Model

AI-ESTATE Client-Server View

AI-ESTATE Component View

AI-ESTATE Application Model

Service Definitions

- Use EXPRESS to define function and procedure prototypes.
- All services one of create, put, get, delete.
- Service categories:
 - Model traversal services
 - Reasoner control services
 - Utility and counting services
- Set of higher-order services defined.

Testability

 A design characteristic which allows the status (operable, inoperable, or degraded) of an item to be determined and the isolation of faults within the item to be performed in a timely manner.

MIL STD 2165

Testability

- An Equipment Has Good Testability If Faults
 Can Be Confidently and Efficiently Identified.
 - Confidently Means Frequently and Unambiguously Identifying Only Failed Elements With No Removal of Fault-tree Elements.
 - Efficiently Means Optimizing the Resources Required.

Diagnosability

- The ability to discern the health state of the system.
- Testability and Diagnosability are intrinsically related.
 - Cannot diagnose without tests.
 - Testing without diagnosis is a vacuous endeavor.

Metrics, Why Worry?

- Terms Not Precisely Defined or Have Multiple Definitions
- Different Diagnostic Tools Calculate Terms Differently
- Establishing Requirements, and Predicting and Evaluating Testability Are Difficult

Metrics Goals

- Precise and Unambiguous Definitions
- Precise and Unambiguous Calculations
- Derived from Test Model
 - Not an Isolated Definition
- Repeatable Metrics

Two 2165 Definitions of FFD

- The fraction of all faults detected by BIT and external test equipment
- The fraction of all detectable faults detected by BIT and external test equipment

More FFD Definitions

- Fraction of all faults detected through the use of defined means. Defined means implies all means of detection that have been identified.
- Percentage of all faults automatically detected by BIT/ETE
- Percentage of all faults detectable by BIT/ETE

More FFD Definitions

- Percentage of all faults detectable on-line by BIT/ETE
- Percentage of all faults and out-of-tolerance conditions detectable by BIT/ETE
- Percentage of all faults detectable by any means

Precise FFD

$$FFD_{level} = \frac{num_detectable_{level}}{/num_diagnosis_{level}}$$

Example (num_diagosis)

Example (num_detectable)

```
FUNCTION num detectable(model:EDIM.edim; lvl:CEM.level) : NUMBER;
        LOCAL
                 diags : SET [0:?] OF EDIM.inference
                 detect set : SET [0:?] OF CEM.diagnosis := NULL;
        END LOCAL;
        REPEAT I := LOINDEX(model.inference) TO HIINDEX(model.inference);
                 diags := QUERY(tmp <* model.inference[I].conjuncts |</pre>
                           (TYPEOF(tmp) = 'EDIM.diagnostic inference'));
                 diags := diags + QUERY(tmp <* model.inference[i].disjuncts</pre>
                           (TYPEOF(tmp) = 'EDIM.diagnostic inference'));
                 diags := QUERY(tmp <* diags</pre>
                          tmp.pos_neg = negative OR
                          NOT(tmp.diagnostic assertion = 'Good'));
                 detect set := detect set +
                          QUERY(tmp <* diags.for diagnosis
                                   tmp.level of diagnosis = lvl);
         END REPEAT;
        RETURN(SIZEOF(detect set));
END FUNCTION;
```


Fraction of Faults Detected

```
FUNCTION ffd(model:EDIM.edim; lvl:CEM.level) : REAL;
        LOCAL
                 diag count : INTEGER;
                 diags : SET [0:?] OF EDIM.inference
                 detect_set : SET [0:?] OF CEM.diagnosis := NULL;
        END LOCAL;
        diag count := SIZEOF(QUERY(tmp <* model.model diagnosis</pre>
                          tmp.level of diagnosis = lvl);
        REPEAT I := LOINDEX(model.inference) TO HIINDEX(model.inference);
                 diags := QUERY(tmp <* model.inference[I].conjuncts |</pre>
                           (TYPEOF(tmp) = 'EDIM.diagnostic inference'));
                 diags := diags + QUERY(tmp <* model.inference[i].disjuncts</pre>
                           (TYPEOF(tmp) = 'EDIM.diagnostic inference'));
                 diags := QUERY(tmp <* diags |</pre>
                          tmp.pos neg = negative OR
                          NOT(tmp.diagnostic assertion = 'Good'));
                 detect set := detect set +
                          QUERY(tmp <* diags.for diagnosis
                                   tmp.level of diagnosis = lvl);
        END REPEAT:
        RETURN(SIZEOF(detect_set)/diag_count);
END FUNCTION;
```


Primitives

- Full EXPRESS specification, though formal and unambiguous, is difficult to read.
- Most metrics can be specified in terms of formally defined primitives.
- Primitives are defined in EXPRESS.
- Metrics are defined using standard mathematical notation with primitives as constituent terms.

Candidate Set of Primitives

- Number of functions
- Number of faults
- Number of detectable faults
- Number of nondetectable faults
- Test Cost
- Test Confidence

- Number of tests
- Number of Units (LRU, SRU, etc)
- Number of Isolatable Units
- Repair Cost
- Replacement Cost
- Failure Rate

Summary

- Sharing information is key to any process.
- Formal models are required to ensure information communicated is unambiguous and understood.
- Standard interfaces and models provide basis for establishing agreement on information meaning.
- P1232 provides standard information interfaces for diagnostic applications.
- P1522 provides standard, formal definitions for metrics assessing system testability/diagnosability

Contact Information

- Dr. John Sheppard, ARINC
 - 410-266-2099
 - jsheppar@arinc.com
- Mark Kaufman, NWAS
 - 909-273-5725
 - kaufman.mark@corona.navy.mil
- http://grouper.ieee.org/groups/1232

